Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Clin. transl. oncol. (Print) ; 25(7): 2265-2276, jul. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-222393

RESUMO

Background Colorectal cancer (CRC) is the major subtype of gastrointestinal malignancy and involves cancer-related genes and signaling pathways to regulate ferroptosis. The present study was conducted to analyze the role of alkB homolog 5 (ALKBH5) in the ferroptosis of CRC cells and provide novel targets for CRC treatment. Methods The transcriptional and protein levels of ALKBH5 and solute carrier family 7 members 11 (SLC7A11) in tissues and cells were determined by qRT-PCR and Western blot assay. HCT116 and SW620 cells were transfected with ALKBH5 overexpression vectors to determine cell viability and levels of reactive oxygen species (ROS), Fe+, glutathione, and glutathione peroxidase 4 using cell counting kit-8, colony formation, fluorescence probe, assay kits, and Western blot assay. The N6-methyladenosine (m6A) level and the enrichment of m6A on SLC7A11 mRNA were measured by m6A quantitative analysis and m6A methylated RNA immunoprecipitation-qPCR, and the mRNA stability was determined after actinomycin D treatment. CRC cells were treated with the combination of SLC7A11 and ALKBH5 overexpression vectors to confirm the mechanism. Nude mice were subcutaneously injected with CRC cells overexpressing ALKBH5. Results ALKBH5 was downregulated in CRC and ALKBH5 overexpression promoted ROS release and ferroptosis. ALKBH5 erased the m6A modification on SLC7A11 mRNA to reduce the mRNA stability of SLC7A11, further reducing SLC7A11 expression. SLC7A11 overexpression reversed the promotive role of ALKBH5 overexpression in ferroptosis. ALKBH5 upregulation mitigated tumor growth in vivo. Conclusions ALKBH5 reduced SLC7A11 transcription by erasing m6A modification, thus promoting the ferroptosis of CRC cells (AU)


Assuntos
Animais , Camundongos , Neoplasias Colorretais/genética , Proteínas Carreadoras de Solutos/genética , Fatores de Transcrição , Espécies Reativas de Oxigênio , Morte Celular , Camundongos Nus , Carcinogênese
2.
PLoS One ; 17(7): e0271062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35901096

RESUMO

Solute carrier (SLC) proteins represent the largest superfamily of transmembrane transporters. While many of them play key biological roles, their systematic analysis has been hampered by their functional and structural heterogeneity. Based on available nomenclature systems, we hypothesized that many as yet unidentified SLC transporters exist in the human genome, which await further systematic analysis. Here, we present criteria for defining "SLC-likeness" to curate a set of "SLC-like" protein families from the Transporter Classification Database (TCDB) and Protein families (Pfam) databases. Computational sequence similarity searches surprisingly identified ~120 more proteins in human with potential SLC-like properties compared to previous annotations. Interestingly, several of these have documented transport activity in the scientific literature. To complete the overview of the "SLC-ome", we present an algorithm to classify SLC-like proteins into protein families, investigating their known functions and evolutionary relationships to similar proteins from 6 other clinically relevant experimental organisms, and pinpoint structural orphans. We envision that our work will serve as a stepping stone for future studies of the biological function and the identification of the natural substrates of the many under-explored SLC transporters, as well as for the development of new therapeutic applications, including strategies for personalized medicine and drug delivery.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Humanos , Proteínas de Membrana Transportadoras/genética , Proteoma/metabolismo , Proteínas Carreadoras de Solutos/genética
3.
Reprod Toxicol ; 107: 1-9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757165

RESUMO

Species differences in developmental toxicity can be due to varying expression of xenobiotic transporters. Hence, knowledge on the ontogeny of these transporters, especially in human, rat and rabbit, is pivotal. Two superfamilies of transporters, the ATP-binding cassette (ABC) and the solute carrier (SLC) transporters, are well known for their role in the absorption, distribution and/or elimination of xenobiotics and endogenous substances. The aim of this study was to compare the expression levels of these xenobiotic transporters in liver, kidney and placenta of man, Wistar rat and New Zealand White rabbit during pre- and postnatal development. For this purpose, qPCR experiments were performed for rat and rabbit tissues and the gene expression profiles were compared with literature data from man, rat and rabbit. Data analysis showed large differences in transporter expression in development and between species. These results can be used to better understand developmental toxicity findings in non-clinical species and their relevance for man.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Rim/metabolismo , Fígado/metabolismo , Placenta/metabolismo , Proteínas Carreadoras de Solutos/genética , Animais , Embrião de Mamíferos , Feminino , Feto , Humanos , Masculino , Gravidez , Coelhos , Ratos Wistar , Especificidade da Espécie
4.
Hum Genet ; 141(1): 81-99, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34797406

RESUMO

The uptake and efflux of solutes across a plasma membrane is controlled by transporters. There are two main superfamilies of transporters, adenosine 5'-triphosphate (ATP) binding cassettes (ABCs) and solute carriers (SLCs). In the brain, SLC transporters are involved in transporting various solutes across the blood-brain barrier, blood-cerebrospinal fluid barrier, astrocytes, neurons, and other brain cell types including oligodendrocytes and microglial cells. SLCs play an important role in maintaining normal brain function. Hence, mutations in the genes that encode SLC transporters can cause a variety of neurological disorders. We identified the following SLC gene variants in 25 patients in our cohort: SLC1A2, SLC2A1, SLC5A1, SLC6A3, SLC6A5, SLC6A8, SLC9A6, SLC9A9, SLC12A6, SLC13A5, SLC16A1, SLC17A5, SLC19A3, SLC25A12, SLC25A15, SLC27A4, SLC45A1, SLC46A1, and SLC52A3. Eight patients harbored pathogenic or likely pathogenic mutations (SLC5A1, SLC9A6, SLC12A6, SLC16A1, SLC19A3, and SLC52A3), and 12 patients were found to have variants of unknown clinical significance (VOUS); these variants occurred in 11 genes (SLC1A2, SLC2A1, SLC6A3, SLC6A5, SLC6A8, SLC9A6, SLC9A9, SLC13A5, SLC25A12, SLC27A4, and SLC45A1). Five patients were excluded as they were carriers. In the remaining 20 patients with SLC gene variants, we identified 16 possible distinct neurological disorders. Based on the clinical presentation, we categorized them into genes causing intellectual delay (ID) or autism spectrum disorder (ASD), those causing epilepsy, those causing vitamin-related disorders, and those causing other neurological diseases. Several variants were detected that indicated possible personalized therapies: SLC2A1 led to dystonia or epilepsy, which can be treated with a ketogenic diet; SLC6A3 led to infantile parkinsonism-dystonia 1, which can be treated with levodopa; SLC6A5 led to hyperekplexia 3, for which unnecessary treatment with antiepileptic drugs should be avoided; SLC6A8 led to creatine deficiency syndrome type 1, which can be treated with creatine monohydrate; SLC16A1 led to monocarboxylate transporter 1 deficiency, which causes seizures that should not be treated with a ketogenic diet; SLC19A3 led to biotin-thiamine-responsive basal ganglia disease, which can be treated with biotin and thiamine; and SLC52A3 led to Brown-Vialetto-Van-Laere syndrome 1, which can be treated with riboflavin. The present study examines the prevalence of SLC gene mutations in our cohort of children with epilepsy and other neurological disorders. It highlights the diverse phenotypes associated with mutations in this large family of SLC transporter proteins, and an opportunity for personalized genomics and personalized therapeutics.


Assuntos
Transtorno do Espectro Autista/genética , Epilepsia/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Proteínas Carreadoras de Solutos/genética , Adolescente , Povo Asiático/genética , Encéfalo/metabolismo , Paralisia Bulbar Progressiva/genética , Criança , Pré-Escolar , Feminino , Perda Auditiva Neurossensorial/genética , Humanos , Lactente , Masculino , Proteínas de Membrana Transportadoras/genética , Mutação , Fenótipo , Arábia Saudita
5.
Gene ; 809: 146033, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34673204

RESUMO

The solute carrier (SLC) superfamily is the largest group of transporters in humans, with the role to transport solutes across plasma membranes. The SLCs are currently divided into 65 families with 430 members. Here, we performed a detailed mining of the SLC superfamily and the recent annotated family of "atypical" SLCs in human and D. melanogaster using Hidden Markov Models and PSI-BLAST. Our analyses identified 381 protein sequences in D. melanogaster and of those, 55 proteins have not been previously identified in flies. In total, 11 of the 65 human SLC families were found to not be conserved in flies, while a few families are highly conserved, which perhaps reflects the families' functions and roles in cellular pathways. This study provides the first collection of all SLC sequences in D. melanogaster and can serve as a SLC database to be used for classification of SLCs in other phyla.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Filogenia , Proteínas Carreadoras de Solutos/genética , Animais , Humanos , Cadeias de Markov
6.
Front Endocrinol (Lausanne) ; 12: 720784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659115

RESUMO

Metformin (MET), the most common medicine for type 2 diabetes (T2DM), improves insulin sensitivity by targeting the liver, intestine and other organs. Its impact on expression of the solute carrier (Slc) transporter genes have not been reported in the mechanism of insulin sensitization. In this study, we examined Slc gene expression in the liver and colon of diet-induced obese (DIO) mice treated with MET by transcriptomic analysis. There were 939 differentially expressed genes (DEGs) in the liver of DIO mice vs lean mice, which included 34 Slc genes. MET altered 489 DEGs in the liver of DIO mice, in which 23 were Slc genes. Expression of 20 MET-responsive Slc DEGs was confirmed by qRT-PCR, in which 15 Slc genes were altered in DIO mice and their expressions were restored by MET, including Slc2a10, Slc2a13, Slc5a9, Slc6a14, Slc7a9, Slc9a2, Slc9a3, Slc13a2, Slc15a2, Slc26a3, Slc34a2, Slc37a1, Slc44a4, Slc51b and Slc52a3. While, there were only 97 DEGs in the colon of DIO mice with 5 Slc genes, whose expression was not restored by MET. The data suggest that more genes were altered in the liver over the colon by the high fat diet (HFD). There were 20 Slc genes with alteration confirmed in the liver of DIO mice and 15 of them were restored by MET, which was associated with improvement of insulin sensitivity and obesity. The restoration may improve the uptake of glucose, amino acids, mannose, fructose, 1,5-anhydro-D-glucitol and bumetanide in hepatocytes of the liver of DIO mice. The study provides new insight into the mechanism of metformin action in insulin sensitization and obesity.


Assuntos
Fígado/efeitos dos fármacos , Metformina/farmacologia , Obesidade , Proteínas Carreadoras de Solutos/genética , Animais , Dieta Hiperlipídica , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Teste de Tolerância a Glucose , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Resistência à Insulina/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , RNA Mensageiro/metabolismo , Proteínas Carreadoras de Solutos/efeitos dos fármacos , Proteínas Carreadoras de Solutos/metabolismo
7.
Genes (Basel) ; 12(7)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34356115

RESUMO

A range of several psychiatric medications targeting the activity of solute carrier (SLC) transporters have proved effective for treatment. Therefore, further research is needed to elucidate the expression profiles of the Slc genes, which may serve as markers of altered brain metabolic processes and neurotransmitter activities in psychoneurological disorders. We studied the Slc differentially expressed genes (DEGs) using transcriptomic profiles in the ventral tegmental area (VTA), nucleus accumbens (NAcc), and prefrontal cortex (PFC) of control and aggressive male mice with psychosis-like behavior induced by repeated experience of aggression accompanied with wins in daily agonistic interactions. The majority of the Slc DEGs were shown to have brain region-specific expression profiles. Most of these genes in the VTA and NAcc (12 of 17 and 25 of 26, respectively) were downregulated, which was not the case in the PFC (6 and 5, up- and downregulated, respectively). In the VTA and NAcc, altered expression was observed for the genes encoding the transporters of neurotransmitters as well as inorganic and organic ions, amino acids, metals, glucose, etc. This indicates an alteration in transport functions for many substrates, which can lead to the downregulation or even disruption of cellular and neurotransmitter processes in the VTA and NAcc, which are attributable to chronic stimulation of the reward systems induced by positive fighting experience. There is not a single Slc DEG common to all three brain regions. Our findings show that in male mice with repeated experience of aggression, altered activity of neurotransmitter systems leads to a restructuring of metabolic and neurotransmitter processes in a way specific for each brain region. We assume that the scoring of Slc DEGs by the largest instances of significant expression co-variation with other genes may outline a candidate for new prognostic drug targets. Thus, we propose that the Slc genes set may be treated as a sensitive genes marker scaffold in brain RNA-Seq studies.


Assuntos
Agressão/fisiologia , Proteínas Carreadoras de Solutos/genética , Transcriptoma/genética , Animais , Encéfalo/metabolismo , Dopamina/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurotransmissores/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Proteínas Carreadoras de Solutos/metabolismo , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiologia
8.
Am J Physiol Cell Physiol ; 321(3): C519-C534, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34319827

RESUMO

Mitochondria are recognized as signaling organelles, because under stress, mitochondria can trigger various signaling pathways to coordinate the cell's response. The specific pathway(s) engaged by mitochondria in response to mitochondrial energy defects in vivo and in high-energy tissues like the heart are not fully understood. Here, we investigated cardiac pathways activated in response to mitochondrial energy dysfunction by studying mice with cardiomyocyte-specific loss of the mitochondrial phosphate carrier (SLC25A3), an established model that develops cardiomyopathy as a result of defective mitochondrial ATP synthesis. Mitochondrial energy dysfunction induced a striking pattern of acylome remodeling, with significantly increased posttranslational acetylation and malonylation. Mass spectrometry-based proteomics further revealed that energy dysfunction-induced remodeling of the acetylome and malonylome preferentially impacts mitochondrial proteins. Acetylation and malonylation modified a highly interconnected interactome of mitochondrial proteins, and both modifications were present on the enzyme isocitrate dehydrogenase 2 (IDH2). Intriguingly, IDH2 activity was enhanced in SLC25A3-deleted mitochondria, and further study of IDH2 sites targeted by both acetylation and malonylation revealed that these modifications can have site-specific and distinct functional effects. Finally, we uncovered a novel cross talk between the two modifications, whereby mitochondrial energy dysfunction-induced acetylation of sirtuin 5 (SIRT5), inhibited its function. Because SIRT5 is a mitochondrial deacylase with demalonylase activity, this finding suggests that acetylation can modulate the malonylome. Together, our results position acylations as an arm of the mitochondrial response to energy dysfunction and suggest a mechanism by which focal disruption to the energy production machinery can have an expanded impact on global mitochondrial function.


Assuntos
Cardiomiopatias/genética , Proteínas de Transporte de Cátions/genética , Isocitrato Desidrogenase/genética , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/genética , Miócitos Cardíacos/metabolismo , Proteínas de Transporte de Fosfato/genética , Processamento de Proteína Pós-Traducional , Proteínas Carreadoras de Solutos/genética , Acetilação , Animais , Transporte Biológico , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Proteínas de Transporte de Cátions/deficiência , Metabolismo Energético , Feminino , Redes Reguladoras de Genes , Isocitrato Desidrogenase/metabolismo , Masculino , Malonatos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Proteínas Mitocondriais/deficiência , Modelos Moleculares , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/patologia , Proteínas de Transporte de Fosfato/deficiência , Fosfatos , Conformação Proteica , Mapeamento de Interação de Proteínas , Transdução de Sinais , Sirtuínas/genética , Sirtuínas/metabolismo , Proteínas Carreadoras de Solutos/deficiência
9.
Biomolecules ; 11(6)2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198503

RESUMO

Subcellular compartmentation is a fundamental property of eukaryotic cells. Communication and metabolic and regulatory interconnectivity between organelles require that solutes can be transported across their surrounding membranes. Indeed, in mammals, there are hundreds of genes encoding solute carriers (SLCs) which mediate the selective transport of molecules such as nucleotides, amino acids, and sugars across biological membranes. Research over many years has identified the localization and preferred substrates of a large variety of SLCs. Of particular interest has been the SLC25 family, which includes carriers embedded in the inner membrane of mitochondria to secure the supply of these organelles with major metabolic intermediates and coenzymes. The substrate specificity of many of these carriers has been established in the past. However, the route by which animal mitochondria are supplied with NAD+ had long remained obscure. Only just recently, the existence of a human mitochondrial NAD+ carrier was firmly established. With the realization that SLC25A51 (or MCART1) represents the major mitochondrial NAD+ carrier in mammals, a long-standing mystery in NAD+ biology has been resolved. Here, we summarize the functional importance and structural features of this carrier as well as the key observations leading to its discovery.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , NAD/metabolismo , Proteínas Carreadoras de Solutos/metabolismo , Transporte Biológico/genética , Humanos , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , NAD/genética , Proteínas Carreadoras de Solutos/genética
10.
J Acquir Immune Defic Syndr ; 87(4): 1093-1101, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34153016

RESUMO

ABSTRACT: Membrane-associated drug transport proteins and drug metabolic enzymes could regulate intracellular antiretroviral (ARV) drug concentrations in HIV-1 target cells such as myeloid cells. We investigated the expression of these transporters and enzymes in monocyte subsets and monocyte-derived macrophages (MDMs) isolated from peripheral blood mononuclear cells (PBMCs) of HIV-uninfected individuals (HIV-negative) and people living with HIV receiving viral suppressive antiretroviral therapy (ART; HIV+ART) and examined plasma and intracellular ARV concentrations. Monocytes were isolated from PBMCs of 12 HIV-negative and 12 HIV+ART donors and differentiated into MDMs. The mRNA and protein expression of drug transporters and metabolic enzymes were analyzed by quantitative real-time polymerase chain reaction and flow cytometry, respectively. ARV drug concentrations were quantified in plasma, PBMCs, monocytes, and MDMs by LC-MS/MS. The mRNA expression of relevant ARV transporters or metabolic enzymes, ABCB1/P-gp, ABCG2/BCRP, ABCC1/MRP1, ABCC4/MRP4, SLC22A1/OCT1, SLC29A2/ENT2, CYP2B6, CYP2D6, and UGT1A1, was demonstrated in monocytes and MDMs of 2 to 4 HIV-negative donors. P-gp, BCRP, and MRP1 proteins were differentially expressed in classical, intermediate, and nonclassical monocytes and MDMs of both HIV+ART and HIV-negative donors. Intracellular concentrations of ARVs known to be substrates of these transporters and metabolic enzymes were detected in monocytes of HIV+ART donors but were undetectable in MDMs. In this study, we demonstrated the expression of drug transporters and metabolic enzymes in monocytes and MDMs of HIV-negative and HIV+ART individuals, which could potentially limit intracellular concentrations of ARVs and contribute to residual HIV replication. Further work is needed to assess the role of these transporters in the penetration of ARVs in tissue macrophages.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1 , Macrófagos/metabolismo , Monócitos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Antirretrovirais/metabolismo , Estudos de Casos e Controles , Regulação da Expressão Gênica/efeitos dos fármacos , Infecções por HIV/sangue , Infecções por HIV/imunologia , Humanos , Leucócitos Mononucleares/metabolismo , Macrófagos/virologia , Monócitos/efeitos dos fármacos , Monócitos/virologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Carreadoras de Solutos/genética , Proteínas Carreadoras de Solutos/metabolismo
11.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073512

RESUMO

Gene clusters are becoming promising tools for gene identification. The study reveals the purposive genomic distribution of genes toward higher inheritance rates of intact metabolic pathways/phenotypes and, thereby, higher fitness. The co-localization of co-expressed, co-interacting, and functionally related genes was found as genome-wide trends in humans, mouse, golden eagle, rice fish, Drosophila, peanut, and Arabidopsis. As anticipated, the analyses verified the co-segregation of co-localized events. A negative correlation was notable between the likelihood of co-localization events and the inter-loci distances. The evolution of genomic blocks was also found convergent and uniform along the chromosomal arms. Calling a genomic block responsible for adjacent metabolic reactions is therefore recommended for identification of candidate genes and interpretation of cellular functions. As a case story, a function in the metabolism of energy and secondary metabolites was proposed for Slc25A44, based on its genomic local information. Slc25A44 was further characterized as an essential housekeeping gene which has been under evolutionary purifying pressure and belongs to the phylogenetic ETC-clade of SLC25s. Pathway enrichment mapped the Slc25A44s to the energy metabolism. The expression of peanut and human Slc25A44s in oocytes and Saccharomyces cerevisiae strains confirmed the transport of common precursors for secondary metabolites and ubiquinone. These results suggest that SLC25A44 is a mitochondrion-ER-nucleus zone transporter with biotechnological applications. Finally, a conserved three-amino acid signature on the cytosolic face of transport cavity was found important for rational engineering of SLC25s.


Assuntos
Sistemas de Transporte de Aminoácidos , Evolução Molecular , Genoma Humano , Proteínas Mitocondriais , Proteínas Carreadoras de Solutos , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico Ativo , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Carreadoras de Solutos/genética , Proteínas Carreadoras de Solutos/metabolismo , Xenopus
12.
Am J Physiol Cell Physiol ; 321(3): C507-C518, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34191628

RESUMO

The fluid in the 14 distinct segments of the renal tubule undergoes sequential transport processes that gradually convert the glomerular filtrate into the final urine. The solute carrier (SLC) family of proteins is responsible for much of the transport of ions and organic molecules along the renal tubule. In addition, some SLC family proteins mediate housekeeping functions by transporting substrates for metabolism. Here, we have developed a curated list of SLC family proteins. We used the list to produce resource webpages that map these proteins and their transcripts to specific segments along the renal tubule. The data were used to highlight some interesting features of expression along the renal tubule including sex-specific expression in the proximal tubule and the role of accessory proteins (ß-subunit proteins) that are thought to be important for polarized targeting in renal tubule epithelia. Also, as an example of application of the data resource, we describe the patterns of acid-base transporter expression along the renal tubule.


Assuntos
Nefropatias/genética , Glomérulos Renais/metabolismo , Medula Renal/metabolismo , Túbulos Renais/metabolismo , Organoides/metabolismo , Proteínas Carreadoras de Solutos/genética , Animais , Transporte Biológico , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Taxa de Filtração Glomerular , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Glomérulos Renais/patologia , Medula Renal/patologia , Túbulos Renais/patologia , Masculino , Camundongos , Anotação de Sequência Molecular , Organoides/patologia , Fatores Sexuais , Análise de Célula Única , Proteínas Carreadoras de Solutos/classificação , Proteínas Carreadoras de Solutos/metabolismo
13.
Nat Metab ; 3(5): 651-664, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33972798

RESUMO

Metabolism negotiates cell-endogenous requirements of energy, nutrients and building blocks with the immediate environment to enable various processes, including growth and differentiation. While there is an increasing number of examples of crosstalk between metabolism and chromatin, few involve uptake of exogenous metabolites. Solute carriers (SLCs) represent the largest group of transporters in the human genome and are responsible for the transport of a wide variety of substrates, including nutrients and metabolites. We aimed to investigate the possible involvement of SLC-mediated solutes uptake and cellular metabolism in regulating cellular epigenetic states. Here, we perform a CRISPR-Cas9 transporter-focused genetic screen and a metabolic compound library screen for the regulation of BRD4-dependent chromatin states in human myeloid leukaemia cells. Intersection of the two orthogonal approaches reveal that loss of transporters involved with purine transport or inhibition of de novo purine synthesis lead to dysfunction of BRD4-dependent transcriptional regulation. Through mechanistic characterization of the metabolic circuitry, we elucidate the convergence of SLC-mediated purine uptake and de novo purine synthesis on BRD4-chromatin occupancy. Moreover, adenine-related metabolite supplementation effectively restores BRD4 functionality on purine impairment. Our study highlights the specific role of purine/adenine metabolism in modulating BRD4-dependent epigenetic states.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , Purinas/metabolismo , Proteínas Carreadoras de Solutos/metabolismo , Fatores de Transcrição/metabolismo , Adenina/metabolismo , Vias Biossintéticas , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular , Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana Transportadoras , Modelos Biológicos , Proteínas Carreadoras de Solutos/genética , Fatores de Transcrição/antagonistas & inibidores , Transcrição Gênica
14.
Am J Physiol Renal Physiol ; 320(5): F826-F837, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33749326

RESUMO

Developing organisms need to adapt to environmental variations as well as to rapid changes in substrate availability and energy demands imposed by fast-growing tissues and organs. Little is known about the adjustments that kidneys undergo in response to these challenges. We performed single-cell RNA sequencing of zebrafish pronephric duct cells to understand how the developing kidney responds to changes in filtered substrates and intrinsic energy requirements. We found high levels of glucose transporters early in development and increased expression of monocarboxylate transporters at later times. This indicates that the zebrafish embryonic kidney displays a high glucose transporting capacity during early development, which is replaced by the ability to absorb monocarboxylates and amino acids at later stages. This change in transport capacity was accompanied by the upregulation of mitochondrial carriers, indicating a switch to increased oxidative phosphorylation to meet the increasing energy demand of a developing kidney.NEW & NOTEWORTHY The zebrafish embryonic kidney has high levels of glucose transporters during early development, which are replaced by monocarboxylate and amino acid transporters later on. Inhibition of Na+-glucose cotransporter-dependent glucose transport by sotagliflozin also increased slc2a1a expression, supporting the idea that the glucose transport capacity is dynamically adjusted during zebrafish pronephros development. Concurrent upregulation of mitochondrial SCL25 transporters at later stages supports the idea that the pronephros adjusts to changing substrate supplies and/or energy demands during embryonic development.


Assuntos
Metabolismo Energético/genética , Perfilação da Expressão Gênica , Pronefro/metabolismo , RNA Mensageiro/genética , Análise de Célula Única , Proteínas Carreadoras de Solutos/genética , Transcriptoma , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Pronefro/embriologia , RNA Mensageiro/metabolismo , RNA-Seq , Proteínas Carreadoras de Solutos/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
15.
Neurobiol Aging ; 103: 152.e1-152.e6, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33781609

RESUMO

The solute carrier (SLC) transporters have been suggested to play important roles in neurodegenerative disorders. Recently, seven SLC transporters were identified to be associated with Parkinson's disease (PD) by genome-wide association studies. However, few replications were conducted, and whether rare variants in these genes were associated with PD was not explored yet. To elucidate the genetic associations of these SLCs with PD, we investigated the rare variants in 743 Chinese early-onset PD (EOPD) patients using whole-exome sequencing, and evaluated the association between rare variants and PD at allele and gene levels. Totally, 58 rare variants were identified in SLC50A1, SLC41A1, SLC45A3, SLC44A4, SLC56A2, SLC2A13 and SLC38A1. At allele level, 6 variants were nominally associated with PD, namely p.S423G in SLC45A3, p.I551V, p.T435S, p.R323C and p.V101M in SLC2A13, and p.R285Q in SLC41A1. Gene-based burden analysis showed enrichment of rare variants of SLC2A13 in EOPD. Our study systematically analyzed the genetic involvement of SLCs in EOPD, identified SLC2A13 as a risk gene for PD, and broadened the current mutation spectrum of PD.


Assuntos
Análise Mutacional de DNA/métodos , Estudo de Associação Genômica Ampla/métodos , Mutação/genética , Transtornos Parkinsonianos/genética , Proteínas Carreadoras de Solutos/genética , Alelos , Povo Asiático/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sequenciamento do Exoma
16.
Mol Genet Metab ; 133(1): 109-112, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33762134

RESUMO

GBA variations are common risk factors for Parkinson's disease (PD), and are found in 21.7% of Ashkenazi PD patients (AJ-PD), 4.23% of them carry an allele, 370Rec, which is different from the common GBA-N370S allele. Using whole-genome-sequencing of 370Rec carriers, N370S carriers, and non-carriers, we characterize the unique 370Rec haplotype in AJ-PDs, and show that it harbors a missense variant replacing the highly conserved methionine-27 with valine in the transmembrane domain of the mitochondrial SLC25A44.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Predisposição Genética para Doença , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Doença de Parkinson/genética , Proteínas Carreadoras de Solutos/genética , Alelos , Feminino , Genoma Humano/genética , Genótipo , Haplótipos/genética , Heterozigoto , Humanos , Judeus/genética , Masculino , Metionina/metabolismo , Mutação/genética , Doença de Parkinson/patologia , Fatores de Risco , Sequenciamento Completo do Genoma
17.
Adv Med Sci ; 66(1): 192-198, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33711669

RESUMO

PURPOSE: High myopia (HM) is an eye disorder with both environmental and genetic factors involved. Many genetic factors responsible for HM were recognized worldwide, but little is known about genetic variants underlying HM in Central Europe. Thus, the aim of this study was to identify rare sequence variants involved in HM in families from Central Europe to better understand the genetic basis of HM. MATERIALS AND METHODS: We assessed 17 individuals from 7 unrelated Central European families with hereditary HM using exome sequencing (ES). Segregation of selected variants in other available family members was performed using Sanger sequencing. RESULTS: Detected 73 rare variants were selected for verification. We observed 2 missense variants, c.938C>T in SLC35E2B - encoding solute carrier family 35 member E2B, and c.1642G>C in FLRT3 - encoding fibronectin leucine rich transmembrane protein, segregating with HM in one family. CONCLUSIONS: FLRT3 â€‹and/or â€‹SLC35E2B â€‹could represent disease candidate genes and identified sequence variants might be responsible for HM in the studied family.


Assuntos
Exoma , Predisposição Genética para Doença , Glicoproteínas de Membrana/genética , Mutação , Miopia/patologia , Proteínas Carreadoras de Solutos/genética , Adolescente , Europa (Continente)/epidemiologia , Feminino , Seguimentos , Humanos , Masculino , Miopia/epidemiologia , Miopia/genética , Linhagem , Prognóstico
18.
Expert Opin Drug Metab Toxicol ; 17(4): 425-439, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33353445

RESUMO

Introduction: Solute Carrier (SLC) and ATP-binding cassette (ABC) transporters expressed in the intestine, liver, and kidney determine the absorption, distribution, and excretion of drugs. In addition, most molecular and cellular processes show circadian rhythmicity controlled by circadian clocks that leads to diurnal variations in the pharmacokinetics and pharmacodynamics of many drugs and affects their therapeutic efficacy and toxicity.Area covered: This review provides an overview of the current knowledge on the circadian rhythmicity of drug transporters and the molecular mechanisms of their circadian control. Evidence for coupling drug transporters to circadian oscillators and the plausible candidates conveying circadian clock signals to target drug transporters, particularly transcription factors operating as the output of clock genes, is discussed.Expert opinion: The circadian machinery has been demonstrated to interact with the uptake and efflux of various drug transporters. The evidence supports the concept that diurnal changes that affect drug transporters may influence the pharmacokinetics of the drugs. However, more systematic studies are required to better define the timing of pharmacologically important drug transporter regulation and determine tissue- and sex-dependent differences. Finally, the transfer of knowledge based on the results and conclusions obtained primarily from animal models will require careful validation before it is applied to humans.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Ritmo Circadiano/fisiologia , Proteínas Carreadoras de Solutos/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Feminino , Humanos , Masculino , Preparações Farmacêuticas/metabolismo , Farmacocinética , Fatores Sexuais , Proteínas Carreadoras de Solutos/genética , Fatores de Tempo
19.
FEBS J ; 288(9): 2784-2835, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32810346

RESUMO

This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.


Assuntos
Transporte Biológico/genética , Proteínas de Membrana Transportadoras/genética , Neoplasias/genética , Proteínas Carreadoras de Solutos/genética , Membrana Celular/genética , Humanos
20.
Clin Transl Sci ; 14(2): 460-467, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33142018

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a common and dose-limiting toxicity to widely used chemotherapeutics. Although the exact molecular mechanism of chemotherapy-induced peripheral neuropathy remains elusive, there is consensus that it is caused by damage to the peripheral nervous system leading to sensory symptoms. Recently developed methodologies have provided evidence of expression of drug transporters in the peripheral nervous system. In this literature review, we explore the role for drug transporters in CIPN. First, we assessed the transport of chemotherapeutics that cause CIPN (taxanes, platins, vincristine, bortezomib, epothilones, and thalidomide). Second, we cross-referenced the transporters implicated in genetic or functional studies with CIPN with their expression in the peripheral nervous system. Several drug transporters are involved in the transport of chemotherapeutics that cause peripheral neuropathy and particularly efflux transporters, such as ABCB1 and ABCC1, are expressed in the peripheral nervous system. Previous literature has linked genetic variants in efflux transporters to higher risk of peripheral neuropathy with the taxanes paclitaxel and docetaxel and the vinca alkaloid vincristine. We propose that this might be due to accumulation of the chemotherapeutics in the peripheral nervous system due to reduced neuronal efflux capacity. Thus, concomitant administration of efflux transporter inhibitors may lead to higher risk of adverse events of drugs that cause CIPN. This might prove valuable in drug development where screening new drugs for neurotoxicity might also require drug transporter consideration. There are ongoing efforts targeting drug transporters in the peripheral nervous system to reduce intraneuronal concentrations of chemotherapeutics that cause CIPN, which might ultimately protect against this dose-limiting adverse event.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/efeitos adversos , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Proteínas Carreadoras de Solutos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Relação Dose-Resposta a Droga , Humanos , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/prevenção & controle , Variantes Farmacogenômicos , Proteínas Carreadoras de Solutos/genética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...